Statistical maritime radar duct estimation using hybrid genetic algorithm–Markov chain Monte Carlo method

نویسندگان

  • Caglar Yardim
  • Peter Gerstoft
  • William S. Hodgkiss
چکیده

[1] This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in lowaltitude maritime radar applications. This is done by statistically estimating the duct strength (rangeand height-dependent atmospheric index of refraction) from the sea surface reflected radar clutter. These environmental statistics can then be used to predict the radar performance. In previous work, genetic algorithms (GA) and Markov chain Monte Carlo (MCMC) samplers were used to calculate the atmospheric refractivity from returned radar clutter. Although GA is fast and estimates the maximum a posteriori (MAP) solution well, it poorly calculates the multidimensional integrals required to obtain the means, variances, and underlying posterior probability distribution functions of the estimated parameters. More accurate distributions and integral calculations can be obtained using MCMC samplers, such as the Metropolis-Hastings and Gibbs sampling (GS) algorithms. Their drawback is that they require a large number of samples relative to the global optimization techniques such as GA and become impractical with an increasing number of unknowns. A hybrid GA-MCMC method based on the nearest neighborhood algorithm is implemented in this paper. It is an improved GA method which improves integral calculation accuracy through hybridization with a MCMC sampler. Since the number of forward models is determined by GA, it requires fewer forward model samples than a MCMC, enabling inversion of atmospheric models with a larger number of unknowns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference about the Burr Type III Distribution under Type-II Hybrid Censored Data

This paper presents the statistical inference on the parameters of the Burr type III distribution, when the data are Type-II hybrid censored. The maximum likelihood estimators are developed for the unknown parameters using the EM algorithm method. We provided the observed Fisher information matrix using the missing information principle which is useful for constructing the asymptotic confidence...

متن کامل

Bayesian estimation of the parameters of a polynomial phase signal using MCMC methods

The aim of this paper is Bayesian estimation of the parameters of a polynomial phase signal. This problem, encountered in radar systems for example, is usually solved using a time-frequency analysis or phaseonly algorithms, see [4] for a detailed introduction. A Bayesian approach using Markov chain Monte Carlo (MCMC) methods for estimating a posteriori densities of the polynomial parameters is ...

متن کامل

Curve and Surface Estimation using Dynamic Step Functions

This chapter describes a nonparametric Bayesian approach to the estimation of curves and surfaces that act as parameters in statistical models. The approach is based on mixing variable dimensional piecewise constant approximations, whose ‘smoothness’ is regulated by a Markov random field prior. Random partitions of the domain are defined by Voronoi tessellations of random generating point patte...

متن کامل

Markov Chain Monte Carlo Maximum Likelihood

Markov chain Monte Carlo (e. g., the Metropolis algorithm and Gibbs sampler) is a general tool for simulation of complex stochastic processes useful in many types of statistical inference. The basics of Markov chain Monte Carlo are reviewed, including choice of algorithms and variance estimation, and some new methods are introduced. The use of Markov chain Monte Carlo for maximum likelihood est...

متن کامل

Bayesian Estimation of GARCH Model by Hybrid Monte Carlo

The hybrid Monte Carlo (HMC) algorithm is used for Bayesian analysis of the generalized autoregressive conditional heteroscedasticity (GARCH) model. The HMC algorithm is one of Markov chain Monte Carlo (MCMC) algorithms and it updates all parameters at once. We demonstrate that how the HMC reproduces the GARCH parameters correctly. The algorithm is rather general and it can be applied to other ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007